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I. INTRODUCTION 

The reliability of any system composed of N components is defined: 

R(T ) - Probability (T a T ) 
o o 

«here T denotes the time of first system failure. A significant practical 

problem is that it is often reasonably easy, and comparatively inexpensive, 

to determine information about the reliability of separate component types, 

denoted R.(T ), i ■ 1,2,,.., N , but fairly difficult and extremely expen- 

sive to determine total system'reliability directly, since failure testing 

often destroys the system. 

In the most common analytically treated case, statistically independent 

components in series, where each of the component types has an assumed ex- 

ponential distribution of failures, i.e., 

-X T 

W * e ±  °» ± ' 1*2»'"*  N » (1) 

the system reliability is given by 

-XT      N 
R(T ) - e  °, X - I    X. . (2) 

0 i-1 x 

(It should be noted in complex systems that these are valid only when all 

components operate the same fraction of mission time.) 

A statistically exact procedure for obtaining upper bounds on X from 

data on component failure, here called the LR procedure, has been developed 

by Lieberman and Ross (1971). In this procedure k. items of each type 

component, with individual failure times T.., i - 1,2,..., N and 

j - 1,2,..., k  are to be observed. A time U is defined: 

ki 

i 
) U - min, { £ T   . (3) 

j-l 13) 
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i.e., Ü is the cumulative time at which one first exhausts all the 

components of one type. The number of each type of component which has 

been used up to this time if given by: 

Then, if 

n± - largest {j < k, | ^^aj. 

i-1 

(4) 

(5) 

(i.e., total components used), Liebexman and Ross showed that 2AU follows 

2 
the x2K distribution; hence upper bounds for X can be estimated. 

A second procedure for estimating upper bounds on X is the approximately 

optimum procedure for Type II censoring (fixed number of failures) developed 

by Mann and Grubbs (1974), which approximates the optimum exact 

bound of El Mawaziny (1965). In this Mann and Grubbs (hereafter referred 

to as MG) procedure, it Is assumed that testing of all components of type 

i commences simultaneously, and continues until r. of the k. original 

have failed. (It is permissible that r. - k.) Then, if the Individual 

failure times are ordered so that T.. < T.......    the total test time for 
ij — i(j+l)' 

the 1  component type is defined, 

h '   lml 
Tij + (ki " ri)Tlri ' (6) 

The approximate optimum upper bound for X, at confidence level a, 

is given by: 

.MS    I,   v VV" 
(7) 

_j_,      ■ ■■■  ri-'wi/ilrfl^"""—-" ,..-.i--;^.^..>..^.^u„^._. '-■        ..■■^AMinmifa^ir-■!>»!! IIII 
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«here n0 is the 100a  percentile of the standard normal distribution, 

and 
N 

m« I   {(r. - 1)/Z.} + 1/U , (8) 
i-1  x     x 

and 

▼ - I   {(r. - 1)/Z?} + 1/Ü2 , . (9) 
i-1   x     x 

with U defined by (3) above. 

A major drawback of the LR technique is that in using K as 

defined by (4)-(5), one "discards" the data on the 

N 
NL - I    {k. - n,} (10) 

i-1  x   x 

components which do not fail by the time U. While necessary for the 

statistical validity of th*2 procedure, this means that, effectively, 

the LR procedure assumes components of each type are tested sequentially, 

st 
i.e. testing of the (j+1)   component of type i commences with failure 

of j   component of that type. This is seldom the testing scheme in 

practice. 

An Immediate consequence of this and (4) is that the LR procedure 

Is Data-Order  Dependent, that is, permuting the second subscript on 

T.. (i.e., In essence permuting the order in which the failures are 

observed) can alter n., and hence the LR estimated bound. This can 

lead to significant practical problems, for often failure data on individual 

components is gathered In simultaneous (parallel) testing of all k. 

components, rather than In sequential testing. Thus there is no preferred 

ordering, and, before using the LR procedure, the analyst is faced with 

the formidable task of deciding on the "best" way to assign the T... 

-  "' ■  >*■-■—- ..--■-.- >■■■  -~.^- .■■.-*.■■ ^■.,.,^^>:-...,^^,—^^-^-. .-,..- , ^>.^..^„—^^^^.^.^s^. ^^.-.„.■a«m.i;u jfg^ 



It is obvious that the MG procedure does net suffer these drawbacks. 

(Note that the data order dependence of ehe LR method is a mixed blessing, 

since it may allow the analyst to construct several alternative bounds to 

X, all of equal statistical validity, by simply permuting the data.) 

The purpose of this paper is to compare the LR and MG procedures 

in terms of the expected bounds, and effects of "discarded" data, using 

both analytic and simulation techniques. 

..i     .   . i      ■■ mini inirrmaii II — -■■ ÜI——»—  .    .-.;.     .<.~^....- _~-..:~..... 



II. COMPARISON OF THE TWO METHODS-ANALYTIC RESULTS 

Immediate comparison of the LR and M6 procedures is complicated by the 

fact the test schemes are conceptually different. As noted above, the deri- 

st 
vation of the LR procedure presupposes that testing of the (j + 1)   com- 

ponent of any type begins with the failure of the j   component of that 

type, and that all component testing ceases at Ü , with the exhaustion of 

the supply of one type of component. Thus, conceptually, the LR ends with 

(N - 1) components (one of each of the other types) still undergoing testing, 

and uo failed plus others, (NL + 1 - N) to be exact, not even tested. By 

contrast, the MG procedure implicitly assumes, for each i , testing of all 

k  components of type . i starts simultaneously, and terminates with a fail- 

ure of some one of them. Thus before data gathered according to the MG 

procedure can be utilized to produce a LR bound, the analyst must first 

choose one (or more) a priori orderings of the data. 

However, for exponential failure data, we appeal to the constant failure 

rate property to convert data gathered in a LR test format into MG format. 

Precisely, constant failure rate implies that irrespective of whether testing 

of the i   component type terminates at a failure, the sufficient statistics 

are total test time and number of failures observed in that time. Thus, if 

all testing is halted at U according to the LR model, then, we shall apply 

the MG procedure (providing each component type experienced at least one 

failure) with: 

Zi-U 

ri " ni * 1 
X y£ y • • • y  «  • (11) 

(This does mildly violate the MG assumptions, in that the n. Is random, not 

set a priori. However, any effect sould be noticeable only in extremely small 

MG 
sample sizes, and will not affect our basic conclusion unless P{X.  < X} is 

significantly increased as a result.) 
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From this, it immediately follows that 

N 

(i-1 

«here K is given by (5), and, similarly, 

m - I   {(n. - 1)/U} + 1/U 
i-1   x 

(12) 
N ) 
I    (n± - 1) + 1 [ /Ü - (K + 1 - N)/U, 

v - (K + 1 - N)/U2 . (13) 

But, with these values, (7) reduces to 

XMG . (K + 1 - N) j l _ 1    + i.  ) 3 

b       Ü     J1  9CK+1-N)  3^K + 1.N) > . (14) 

Observe (14) is a strictly increasing function of (K+l-N) for U 

fixed and n < 5.65 (which includes all cases of practical interest). 

Thus, since N >^ 2, 

n.    3 

b -  U  )   9(K - 1)  3^TT 

Since the bound produced by the LR method from this data is 

2 ( 

xbR - ^ftr- • <16) 

we see that, when the MG procedure is applied to the same data actually 

used in the LR procedure, the computed bounds satisfy, 

/,MG„LR\ . 2(K - 1) ( .     1       \     )3 

___.     -* in      n     in ii     .        i    nlnr •-        -  Hit -  - ■■■■     - ■" -"-•--iilliillllllllirill*-! 



In Table 1, we show values of the right hand side of (17) for representative 

R and a. It Is obvious that, for all practical values of K and a, 

(«) <l- 

Thus, when both the Lieberman-Ross and Mann-Grubbs procedures are 

used to compute an upper bound to X, if the MG procedure uses only 

the same failure times as are actually used by the LR procedure, the u*>?^ 

bound prodtxed by the Mann Grubbs procedure will be smaller than that 

produced by Lieberman-Ross. 

An immediate extension of the above result is that the LR procedure 

may produce lower bounds than the MG procedure only ia those cases where 

the LR procedure does not utilize all the data available. Specifically, 

consider the situation where the LR procedure utilizes failure times on 

all but one componeut of each type except the type which exhausts first, 

which we assume is type i • 1 . Testing is assumed to have continued 

on these (N - 1) components until they al?o failed. Thus: 

nl ' kl» 1   X (18) 
n± - k. - 1  i -- 2, ..., N, 

and 

Z - U, 
(19) 

Z±  > Ü, i - 2, ...» N. 

Let e > 0 and arbitrarily small, and assume that each component of type 

i > 2, on test at t - U, fails at t ■ U + e. Thus, MG can be applied 

with: 



r±'\        l-i, % M; 

Zx - U I (20) 

Z±(e) - U + e, i - 2 N. 

Since, for e arbitrarily small, Z.(e) < Z., i - 2, ..., N, 

we are thus understating the reliability of components of type i, i > 2. 

MG 
Hence we expecte the bound computed using Z.(e), denoted X. (e) to 

be conservative, i.e. 

and, more specifically 

.MG . »MG, » 
X.  < X, (e), 

X^ < liB^, X^(e). (21) 

It is easily shown 

tMG (>  ü (   K  3vEJ  ' 
£ime^ x;

w(e) « Ä { ! - * + -i <  , C22) 

with, 

N N N 
K - I    (r - 1) + 1 - X (k. - 1) + 1 - k. + I (k. - 1), 

i-1  x i-1  x ■"■  i-2 

i.e. K is degree of freedom from the LR procedure on this data. Thus, 

for this data, 

(»■*»)« -JB- |i-2 + Al
3.      (a) 

Computations show that, for .75 <^ a <_ .995, and 2 <_ k <^ 120, the 

righthand side of (23) does not differ from unity by more than 0.4%, except for 

k - 2 and a - .995, when it differs from unity by 0.8%. (Some of 



this may be due to minor inaccuracies in the computer routines used.) 

Thus, we conclude that the Lieberman-Ross method can not produce a signifi- 

cantly lower, VPP«1, bound on \   than the Mann Grubbs method» unless- Individual 

component failure times are collected ssparately* and: combined into pseudo-system 

failures in such a way that the LR procedure assumes some of the components 

were never tested, i.e. the LR method must deliberately discard some of 

the data in order to compute a better bound than MG. 

Since both the Lieberman-Ross and Mann-Grubbs procedures estimate 

upper bounds to X, it follows that,unless the confidence level (a) is 

sufficiently low that computing a false bound is significantly probable, 

the method producing the lower estimated bound will be superior. Thus, 

we look for the LR method to be superior to MG when the ordering of 

the data chosen for the LR method is such that some, probably a 

significant fraction, of the available data on failure times is not 

utilized, i.e. when NL, as defined by (10) satisfies NL > (N-l). 



Ill  COMPARISON OF THE TWO METHODS - SIMULATION RESULTS 

Having determined that the cases vhere the Lleberman-Ross method 

should be superior to the Mann-Grubbs procedure should arise among those 

where the data ordering used for the LR procedure "discards" some of 

the available failure data, we proceded to Investigate this relationship 

In more detail. We felt -nat the most useful measure would be the 

probability that the LR method would produce a superior bound, as a 

function of the amount of data unused. Since analytic techniques were 

not able to shed much additional light In tbis area, we turned to simulation. 

The simulation described in [4], which allows generation of component 

failure data for up to twenty individual components of up to six different 

types, was modified for this purpose. We restricted ourselves to the 

two component type (N"2) case for simplicity. Four individual runs, 

each run consisting of 500 iterations, were conducted for each of the 

combinations of confidence levels, components and failure rates shown in 

Table 2. In each iteration, independent exponential failure times were 

generated for all the components specified of each type, and the MG 

MG 
procedure applied to these data, to produce a bound, A, , at the 

specified confidence limits. Then the data were ordered into a single 

LR pseudo-failure sequence. The manner in which individual component 

failures were generated served to insure this was a suitably random 

ordering of the failure times. The LR procedure was applied to this 

LR 
sequence, to produce the bound X,   . The two bounds were compared, 

and the LR procedure deemed to produce the superior bound if either of 

the following held: 

10 



(1) X < Xj* < JkJ8 , 

(2) xjj5 < X < x£R , 

(3) XJJ0 < X^ < X . 

In each iteration, this result was compared with the percentage of 

available (i.e. generated) data not used by the LR procedure: 

N N 
PL- { I    (k. -n.)}/{ I   k.} , (24) 

i-1  x   x   i-1 x 

i+f 

where £ is the index of the component type which was first exhausted 

i.e. n- ■ kf . 

At the completion of each 500 iteration run, the percentage of 

iterations where the data ordering had produced a superior bound by the 

LR method was computed, plotted, and tabulated as a function of the 

percentage of lost data, PL. The results, for each run, were given in 

a function: 

The percentage of data orderings 

TOTR(J)- {    ^th
T*°5^-l) ^V05 J Wl?ere   <25) '  the LR method produced a superior 

bound. 

•(Note TOTR(J) was set to -1.0 if no data orderings with 

.05(J-1) < PL j< .05J were observed on that run.) The plotted distribution 

of values of TOTR(J) for runs at a - .95 and o ■ .80 are shown at 

Figures 1 and 2 respectively. Since TOTR(J) can be regarded as an 

estimate to the probability that the LR method produces a superior 

bound, given that between 5(J-1)I and 5J% of the data was ignored, 

11 



it is obvious that only if the analyst is willing to order the data 

in such a way that 80Z or more of the available data is not used, will 

the probability that the LR bound is superior likely exceed one half. 

(The reason for the superiority of the LR procedure in some cases when 

little data was discarded is that, in these cases, the MS procedure 

MS    \ 
produced a false bound, i.e. \.    < X ,) 

From Figures 1 and 2 it appears the LR procedure performs slightly 

better vis-a-vis the MG procedure at o ■ .80 than at o « .95. Essentially, 

MG 
this is the result of the probability that AT  < X increasing as a 

decreases. 

Based on our observation that an analyst would have to order LR 

data in such a way that the amount of discarded data exceeded 80% of 

that available before the LR could be reasonably expected to out perform 

MG, the best strategy to do this would be to pick the T.  in decreasing 

order, i.e. 

^i(-j+l) < ±A  *       i ■ 1, 2, ,.., N . 

This is precisely equivalent to discarding, as much as possible, the 

least reliable samples of each component type. This is not, philosophically, 

a particularly attractive strategy, 

12 



IV.  SUMMARY AND CONCLUSIONS 

In this paper we have examined two different methods for computing 

bounds on series system reliability, the statistically exact procedure of 

Lieberman and Ross» and the approximately optimum procedure of Mann and 

Grubbs. Our analysis showed that, when used with the same data, the MG 

procedure would always produce a lower upper bound on X than the LR procedure« 

Thus, the MG procedure seems preferable, especially at high confidence levels, 

since the probability of computing a false bound is correspondingly small 

there. Further analysis and simulation results showed that the LR 

procedure could be reasonably expected to produce a superior bound to MG 

only where the failure times were ordered such that the LR procedure 

essentially "discarded" most of the data, and this is usually equivalent 

to retaining samples of only the most reliable components. 

Thus, it appears, at present, that using the LR procedure would be 

preferable to using the MG procedure only in very special circumstances. 

The only qualification we should note is that we have not fully utilized 

the LR procedure's ability to usually produce multiple bounds from the 

same data. This may be exploited in some way to make the LR procedure 

more competitive, however we are not certain of that at this time. 

13 
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TABLE 2 

A. Sample Sizes Used in Simulation 

k, k, 2 

2 2 
2 3 
2 4 
2 5 
3 3 
3 4 
3 5 
5 5 
5 10 

10 10 

1 B. Ratio of Failure Rates Used in Simulation 

(AJAJ) - 10.00, 5.00, 2.50, 1.25, 1.00, 0.500, 0.250, 0.125, 0.100 

For the two component case, (X /X2) is only rate needed. 
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Figure 1   Computed values of TOTR(J), as defined by (25), for a - .95 

Figure 2   Computed values of TOTR(J), as defined by (25), for a - .80 
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